

PLAXIS 3D

Tutorial Manual

2013

岩土工程有限元分析软件

PLAXIS 3D 2013[°]

案例教程

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层, 100043

版权

计算机程序 PLAXIS 及全部相关文档都是受专利法和版权法保护的产品。全球范围的所有权属于 Plaxis bv。如果没有 Plaxis 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19 号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©, 2013.

節這达

目录

路堤修建1	
几何模型2	
1.1 工程属性2	
1.2 土层定义	
1.3 路堤和排水线定义4	
网格划分6	
执行计算7	
3.1 初始阶段7	
3.2 固结分析7	
查看计算结果10	
安全性分析14	
5.1 安全性计算的定义14	
5.2 结果估计-安全性15	
使用排水线17	

路堤修建

在高地下水位的软土地基上建造路堤会引起孔隙水压力的增加。由于这种不排水条件, 有效应力会保持在较低的水平,为了安全地建造路堤,必须留出中间固结时间。在固结过程 中,超孔隙水压力会消散,土层会获得继续进行施工所需要的剪切强度。

本练习着重介绍路堤的建造过程,分析上述力学机理。在分析过程中,将引入两个新的 计算选项,分别是固结分析和使用安全性分析(*phi/c-折减*)的安全系数计算。也涉及到模拟排 水线以加速排水固结过程。

目标:

- ▶ 模拟排水线
- ▶ 固结分析
- ▶ 在固结过程中改变渗透性。
- ▶ 安全性分析(phi-c 折减)。

几何模型

图 1.1 显示了路堤的一个横断面。该路堤宽 16m,坡度 1:3。该问题具有对称性,因此 仅需模拟一半(本例选择右半边)。本项目中考虑 2m 长的具有代表性的断面进行分析。路 堤本身为松散砂土,地基土为 6m 厚的软土。该软土层的上部 3m 用泥炭土模拟,下部 3m 用粘土模拟。潜水位位于原始地面以下 1m 处。软土层以下为密砂层,模型中考虑 4m 厚砂 层。

图 1.1 软土路堤几何形状

1.1 工程属性

- 1. 启动输入程序,从快速选择对话框中选择开始一个新工程(Start a new project)。
- 2. 在工程属性窗口(Project properties)的工程(Project)页面中,输入一个适当的标题。
- 3. 设置模型尺寸 xmin=0, xmax=60, ymin=0, xmax=2, 单位保持默认值。

1.2 土层定义

组成路堤基础的土层用一个钻孔定义。在结构模式定义路基层。

- 1. 在点(0,0)处创建一个钻孔。修改土层窗口(Modify soil layers)就会弹出。
- 2. 按照图 1.2 定义三个土层。

0.000	🐴 Add 🦷 Insert 🔍	<u>D</u> elete
0.000	Soil layers Water Initial conditions Surfaces	Field data
ad - 1.000	Layers Boreho	e_1
	# Material Top	Bottom
	1 Peat 0.000	-3.000
	2 day -3.000	-6.000
-	3 Sand -6.000	-10.00

图 1.2 土层分布

3. 水位为 z=-1m。在钻孔柱状中将水头设为-1m。

- 4. **三**打开**材料组窗口**。
- 5. 根据表 1.1 创建土层材料组,将这些材料属性赋给钻孔中的相应土层。
- 6. 关闭修改土层窗口(Modify soil layers),进入结构模式(Structures)中定义结构单元。

注: 应定义初始孔隙比(*einit)*和渗透系数改变(*ck)*,以模拟由于土体压缩而导致的渗透系数变化。在使用高级模型时推荐使用该选项。

参数	符号	路堤	砂土	泥炭土	粘土	单位
一般设定		I	1	1		
材料模型	Model	硬化土	硬化土	软土	软土	
排水类型	Туре	排水	排水	不排水 A	不排水 A	
地下水位以上土重度	Yunsat	16.0	17.0	8.0	15.0	kN/m ³
地下水位以下土重度	V sat	19.0	20.0	12.0	18.0	kN/m ³
初始孔隙比	e _{init}	0.5	0.5	2.0	1.0	
参数						
标准三轴排水试验割线 刚度	E_{50}^{ref}	2.5×10 ⁴	3.5×10 ⁴	-	-	kN/m ²
主固结加载切线刚度	E_{oed}^{ref}	2.5×10 ⁴	3.5×10 ⁴			kN/m ²
卸载/重加载刚度	E_{ur}^{ref}	7.5×10 ⁴	1.05×10 ⁵			kN/m ²
刚度的应力水平相关幂 值	т	0.5	0.5			
修正压缩指数	λ^*			0.15	0.05	
修正膨胀指数	к*			0.03	0.01	
内聚力	C' _{ref}	1.0	0.0	2.0	1.0	kN/m ²
摩擦角	φ'	30.0	33.0	23.0	25.0	o
剪胀角	ψ	0.0	3.0	0.0	0.0	0
高级参数:默认设置		是	是	是	是	
渗流参数						
数据		USDA	USDA	USDA	USDA	
模型		Van Genuchten	Van Genuchten	Van Genuchten	Van Genuchten	
土类型		壤质砂土	砂土	粘土	粘土	
< 2 µm		6.0	4.0	70.0	70.0	%
2µm-50µm		11.0	4.0	13.0	13.0	%
50 µm – 2 mm		83.0	92.0	17.0	17.0	%
默认设置		是	是	是	是	
x 向渗透系数	k _x	3.499	7.128	0.1	0.04752	m/day
y 向渗透系数	k _y	3.499	7.128	0.1	0.04752	m/day
z 向渗透系数	k _z	3.499	7.128	0.02	0.04752	m/day
渗透系数变化	C _k	1×10 ¹⁵	1×10 ¹⁵	1.0	0.2	

表 1.1 路堤及地基土的材料属性

PLAXIS 3D 2013 案例教程: 路堤修建

界面强度		刚性	刚性	刚性	刚性	
强度折减因子	R _{inter}	1.0	1.0	1.0	1.0	
初始条件						
<i>K</i> 0的确定		自动生成	自动生成		自动生成	
超固结比	OCR	1.0	1.0	1.0	1.0	
覆土压力	РОР	0.0	0.0	5.0	0.0	kN/m ²

1.3 路堤和排水线定义

在结构模式中定义路堤和排水线。

1. 定义路堤土层:

- 1) 谷文模型方向,点击工具栏上相应按钮显示前视图。
- 2) 《 在点(0,0,0)、(0,0,4)、(8,0,4)、(20,0,0)之间创建面。
- 4) 际 按住 Ctrl 键在模型中点击选择刚创建的线和面。
- 5) 「「点击拉伸对象按钮(Extrude object)。
- 6) 按照图 1.3 将将拉伸向量的 y 分量设为 2, 点击应用(Apply)。

Extrude (Line_1 Polygon_1)		E
Selected object: (Line_1	[Polygon	_1)
Extrusion		
Extrusion vector	x	0.000
	у	2
	z	0.000
Extrusion vector length		0.000
	<u>R</u> eset	Apply

图 1.3 拉伸窗口

- 7) 删除拉伸前创建的面和线。
- 8) 右击由拉伸命令创建的体,并在弹出的菜单中指向 Soil_4 选项。
- 9) 此时出现一个新的菜单。指向设置材料选项(Set material option),选择路堤 (Embankment)。

本工程中,通过对比无排水线工况下的结果,来研究排水线对固结时间的影响。排 水线只在设置排水线工况的计算阶段中激活。

2. 排水线按照正方形排列,两个连续排水线之间的排(或列)间距为2m,本例中只 考虑一排排水线。按照如下步骤创建排水形式:

- 1) 示 点击侧边工具栏中的**创建水力条件**按钮(Create hydraulic conditions)。
- 2) ^李在弹出的菜单中选择**创建线排水(Create line drain)**。在点(1,1,0)和(1,1,-6)之间创 建一个线排水。
- 3) 🟥 点击创建阵列按钮,定义排水形式。
- 4) 在创建阵列窗口的形状下拉菜单中选择 1D, x 方向,指定排水形式。如图 1.4 所示。 几何模型见图 1.5。

Create array	
Selected objects	
Line_1	*
	*
Array pattern	Configuration
Rectangular	Shape $1D_t$ in x direction \checkmark
	Number of columns 9
	Distance between columns
	× 2 💽
	The original objects will be kept and 8 copies will be added.
	<u>Q</u> K <u>C</u> ancel

图 1.4 排水形式的设定

图 1.5 几何模型

网格划分

- 1. 进入网格模式。
- 2. ⁶⁶ 点击划分网格按钮。将单元分布设为粗(Coarse)。
- 3.
 叠 查看生成的网格。网格划分结果见图 2.1。

图 2.1 网格划分

执行计算

将考虑两次路堤建造过程。第一次计算不考虑排水线。

3.1 初始阶段

- 在初始条件下路堤是不存在的,因此在初始阶段要冻结对应的土体。使用 KO 方法 计算初始应力。初始水压完全是静水压力,取决于由赋给钻孔的水头值所确定的一 般潜水位。在初始阶段,孔隙水压的计算方法选择潜水位(Phreatic)选项,总体水位 设为钻孔水位_1(BoreholeWaterlevel_1),该水位对应由指定的钻孔水头确定的 水位。
- 渗流边界条件可以在模型浏览器中的模型条件(Model conditions)子树中设定。在当前条件下,由于对称性,必须关闭左侧竖向边界 x_{min},这样就不会发生水平方向的 渗流。底部边界要打开,因为超孔压可以自由流入下部渗透性大的砂土层中。上部 边界显然是要打开的。
- 3. 定义完成后地下水渗流子树 (GroundwaterFlow) 视图见图 3.1。

图 3.1 地下水渗流边界条件

3.2 固结分析

固结分析在计算中引入了时间维度。为了准确进行固结分析,必须选择合适的时间步。 使用小于最小临界值的时间步会导致应力振荡。PLAXIS中的固结条选项采用考虑了临界时间 步的全自动时间步程序,在该程序中加载类型参数一共有三个主要形式:

- i. 给定时间的固结,包括对激活的几何模型变化的影响(分步施工 Staged construction)。
- ii. 直至几何模型中的所有孔隙水压都减小到指定最小值(Minimum pore pressure)时的 固结。
- iii. 直至土层达到指定的固结度(Degree of consolidation)的固结。

固结过程-无排水线

PLAXIS 3D 2013 案例教程:路堤修建

路堤建造分为两个阶段。第一个施工阶段完成之后,为了使超孔隙水压消散,要进行为期 30d 的固结。第二个施工阶段之后,要进入另一个固结期,由此来决定了最终的沉降量。因此,除了初始阶段之外,还要定义四个计算阶段。

按照如下步骤定义计算阶段:

- 1. 阶段 1:
 - 1) 在引入第一个施工阶段之前,先点击添加阶段按钮。
 - 2) 在一般设定子树的**计算类型**下拉菜单中选择固结选项。
 - 3) ¹ 加载类型默认为分步施工。本阶段使用该默认值。
 - 4) 1 孔隙水压计算方法自动选择潜水位(Phreatic)选项。注意,一个计算阶段的
 总体水位可以在模型浏览器中的模型条件下的水力条件(Water)子树中设定。
 - 5) 将时间间隔(Time interval)设为 2days, 点击 OK 关闭阶段窗口。
 - 6) 在分步施工(Staged construction)模式中激活路堤的第一部分。
 - 7) 🗟 点击添加阶段按钮,引入下一个计算阶段。
- 阶段 2: 第二阶段也是固结分析。在这一阶段几何模型不改变,因为只要求进行对 最终时间的固结分析。
 - 1) 将计算类型设置成固结(Consolidation)。
 - 2) 将时间间隔(Time interval)设为 30days。本阶段其余参数使用默认值。
 - 3) 🐱 点击添加阶段按钮,引入下一个计算阶段。
- 3. 阶段 3:
 - 1) 将计算类型设置成固结(Consolidation)。
 - 2) 将时间间隔(Time interval)设为 1day。其他参数采用默认值。
 - 3) 在分步施工(Staged construction))模式中激活路堤的第二部分。
 - 4) 🐱 点击添加阶段按钮,引入下一个计算阶段。
- 4. 阶段 4: 第四个阶段是达到最小孔隙水压的固结分析。
 - 1) 将计算类型设置成固结(Consolidation)。
 - 2) 在加载类型下拉菜单中选择最小孔隙水压(Minimum pore pressure)选项。

```
最小孔隙水压采用默认值(IP-stop]=1.0 kN/m<sup>2</sup>),其余参数也采用默认值。
```

这样,计算阶段的定义就完成了。

5. ✓ 在开始计算之前,点击选择曲线点按钮,选中如下点:如点A,选择路堤坡趾 处,第二点(点B)用于绘制超孔隙水压力发展(及消散)曲线。最后,还要选中 软土层中间的一点,靠近(但不正好落在)左侧边界上。

在固结分析的过程中,可以在计算信息窗口的上部观察到时间的发展,如图 3.2 所示。除了乘子,出现了一个参数 *P_{max}*,它代表当前的最大超孔隙水压。这个参数在最小孔压固结分析情况下很重要,此时要求所有孔隙水压都要减小到指定值以下。

hase_4 Kernel information Start time 17 Memory used ~:					
Kernel information Start time 17 Memory used ~1					
Start time 17 Memory used ~:					
	1:45:11 169 MB		CPUs: 4/	4 32-bit	MP 64-bi
Total multipliers at th	e end of previo	us loading step		-Calculation progres	ss
IMpode	1.000	Parcer may	16.64	Pmax	
ΣM	1.000	ΣMwakuma	1.000	40.0	
ΣMarcal	0.000	F.	0.000		<u>ا</u>
ΣM _{ef}	1.000	F.	0.000	20.0	
ΣM _{state}	0.000	F,	0.000		
- Contraction of the Contraction		Stiffness	-0.1174E-3	0.00	
		Time	42.58	10.0	
				time N	ode A
Iteration process of	current step				
Current step	27	Max. step	250	Element	3918
Iteration	7	Max. Iterations	60	Decomposition	100 %
Global error	0.01143	Tolerance	0.01000	Calc. time	197 5
Plastic points in curre	nt step				
Plastic stress points	8461	Inaccurate	152	Tolerated	849
Plastic Interface point	nts O	Inaccurate	0	Tolerated	3
Tension points	31	Cap/Hard points	8014	Tension and apex	0
Calculating stresses .		Pr	e <u>v</u> iew	Pause	X Stop

图 3.2 活动任务窗口中显示的计算进程

查看计算结果

Image: 计算完成之后,选择第三阶段并点击查看计算结果按钮。此时输出窗口中显示的是路堤最后一部分在不排水施工后的变形网格,如图 4.1 所示。从第三阶段的计算结果可以看出,变形网格显示了由于不排水行为导致的路堤坡趾和内部的隆起。

图 4.1 路堤不排水施工后的变形网格 (阶段 3, 真实比例)

- 2. 在变形菜单中选择**增量位移** (Incremental displacements $|\Delta u|_{)}$ 。
- 3. **→** 在视图菜单中选择**矢量图选项**,或者在工具栏中点击相应的按钮,显示矢量图 结果。
- 4. 评估总位移增量,可以看出破坏机理正在发展,如图 4.2。

图 4.2 路堤不排水施工后的位移增量

- 5. 按住 Ctrl+7,显示发展的超孔隙水压力 (更多快捷键详见参考手册附录 C)。也可以 在应力菜单中选择**孔隙水压选项(Pore pressures)**,在出现的子菜单中选择相应的选 项。
- 6. 《 点击中心主方向,就会在每个土单元中心显示超孔隙水压的主方向。结果如图
 4.3 所示。从图中可以清晰的看出最大超孔隙水压出现在路堤中心下方。
- 7. 在下拉菜单中选择阶段 4.

图 4.3 路堤不排水施工后的超孔隙水压

- 9. ¹¹在工具栏中点击等值线 (Contour lines) 按钮,以等值线形式显示结果。
- 10. 在视图(View)菜单中选择视角(Viewpoint)选项。弹出相应的窗口。
- 11. 在视角(Viewpoint)窗口中选择前视图 (Front view) 选项,如图 4.4 所示。

Viewpoint		— ×
Viewpoint		
Angle around Z-axis	0	۰
Angle out of XY-plane	0	o
Distance	308.2	m
Top view Image: Constraint of the second s	Front view	Right view
	Apply	Close

图 4.4 **视角**窗口

12. 用绘制扫描线 (Draw scanline) 按钮或视图菜单中的相应选项,定义等值线标签的位置。

从图中看出在第四阶段中原始土层表面和路堤的沉降明显增大。这是因为超孔压消散(=固结),可以导致土层的进一步沉降。图 4.5 是固结后的剩余超孔隙水压分布图,核对其最大值小于 1.0kN/m².

- 13. 曲线管理器(Curves manager)通常用于观察路堤下超孔隙水压随时间的变化。按照 如下步骤创建曲线:
 - 1) 后击工具栏中的曲线管理器器(Curves manager)按钮。弹出相应的窗口。
 - 2) 在图表页面点击创建。弹出曲线生成窗口。
 - 3) 从下拉菜单中选择工程(Project)选项,在树形目录中选择时间作为 x 轴。
 - 从下拉菜单中选择软土层中间点 B,在树形目录中依次选择应力 Stresses、孔 隙水压 Pore pressure、p_{excess} 作为 y 轴。
 - 5) y 轴选择反转选项(Invert)。
 - 6) 点击 OK 以生成曲线。
 - 7) 📧 点击工具栏中的设置按钮,将弹出设置窗口,显示创建曲线页面。
 - 8) 点击阶段按钮,从弹出窗口中选择阶段1至阶段4。
 - 9) 在曲线标题框中输入 "Phases1-4", 以重命名曲线。
 - 10) 点击 Apply 更新图形。
 - 11) 📕 保存图表。

注:右击图表名称,从弹出的菜单中指向视图(View)选项并在图表选项中选择图例 (Legend),就可以在图表区域内部显示图例。

图 4.6 路堤下超孔隙水压力的发展

图 4.6 清楚的显示了四个计算阶段的情况。在施工阶段中,超孔隙水压力会即时的产生 小幅增大,但是在固结过程中,超孔压又随着时间的增长逐渐减小。实际上,在路堤建造过 程中就已经产生了固结,因为施工也有一个较小的**时间间隔**。

安全性分析

在路堤设计中,不但最终的稳定性十分重要,施工过程中的稳定性同样十分重要。从输 出结果中可以很清晰的看出,第二个施工阶段之后破坏机理就开始发展。

评价该问题这个施工步的总体安全系数很有意义,当然对其他施工步也很重要。

在结构工程中,通常将安全系数定义为破坏荷载和工作荷载的比值。但是对土工结构, 这种定义并不总是适用。比如对于路堤,绝大部分的荷载是由土重引起的,而土重的增加并 不一定会导致坍塌。实际上,在一个土自重逐渐增大的试验(像离心试验)中一个纯摩擦土 的边坡不会破坏。因此安全系数更恰当的定义方法:

Safety factor =
$$\frac{S_{maximum available}}{S_{needed for equilibrium}}$$
 (5.1)

其中,S代表剪切强度。即真实强度与计算的达到平衡条件所需的最小强度之比即为安 全系数,这是土力学中的习惯用法。通过引入标准库仑条件,安全系数表示为:

Safety factor =
$$\frac{c - \sigma_n \tan \varphi}{c_r - \sigma_n \tan \varphi_r}$$
 (5.2)

其中, $c \, n^{\varphi}$ 是输入的强度参数, σ_n 是实际的法向应力分量。参数 $c_r \, n^{\varphi_r}$ 是刚够维持 平衡的折减强度参数。上述原理为 *PLAXIS* 中用于求解总体安全系数的安全性分析的基本原 理。。在这种方法中,内聚力和摩擦角的正切按照同样的比例进行折减:

$$\frac{c}{c_r} = \frac{\tan\varphi}{\tan\varphi_r} = \Sigma M s f$$
(5.3)

强度参数的折减由总乘子 Σ^{Msf} 控制。这个参数在逐步计算过程中不断增大直至发生破坏。因此,安全系数就定义为发生破坏时的 Σ^{Msf} 值,假设对一系列连续加载步在破坏时可以得到一个基本为常数的 Σ^{Msf} 值。

5.1 安全性计算的定义

在计算阶段窗口的计算类型下拉菜单中,可以选择安全性计算选项。

为计算路堤在不同施工步的总体安全系数,应按照如下步骤进行:

- 首先,我们想要计算第一个施工步后的安全系数。在计算程序中引入一个新的计算 阶段 (*Phase_5*),并在开始阶段下拉菜单中选择阶段 1.
- 2. 在一般设定子树中,选择计算类型为安全性计算(Safety)。
- 3. **△** 加载类型自动修改为增量乘子,这是安全性**计算类型**中唯一的选项。
- 4. 控制强度折减过程的初步乘子增量, Msf, 自动设为 0.1。本练习中使用该值。

- 5. 注意在孔隙水压力计算类型下拉菜单中的使用前一阶段孔压(Use pressures from the previous phase)选项会自动选择并变灰,表明这个选项不可修改。
- 6. 为了从求解的破坏机理中排除已有变形,在**变形控制参数**子树中选择**重置位移为零** (*Reset displacements to zero*)选项。其余所有参数都使用默认值。这样,第一个安全 性计算阶段就定义完成了。
- 7. 按照同样的步骤创建新的计算阶段,分析每个固结阶段结束时的稳定性。除了选择 计算类型为安全性(Safety)之外,选择相应的固结阶段作为起始阶段参数。显示 安全性(Safety)计算阶段的阶段浏览器,如图 5.1 所示。
- 8. / 计算安全性阶段。

注:安全性计算中的最大步数默认值(*Max steps*)为100。与**分步施工**计算相比,附加步数会全部执行。在大多数安全性计算中,100步足够达到破坏状态。如果未达到,步数可以增加到最大值为10000。

对大多数安全性分析, Msf =0.1作为启动计算过程的初始步是合适的,强度折减总乘子的发展, $\sum Msf$,由荷载进阶过程自动控制。

Phases explorer	
📀 Initial phase [InitialPhase]	+
🔷 Phase_1 [Phase_1]	🔀 📑 🚍
Phase_2 [Phase_2]	🖪 🕒 🚍
Phase_3 [Phase_3]	E; 📑 🚍
Phase_4 [Phase_4]	👪 🚍 🕒
Phase_8 [Phase_8]	Γ 🛆 🌛
Phase_7 [Phase_7]	Γ 🛆 论
Phase_6 [Phase_6]	Γ 🛆 🌶
Phase_5 [Phase_5]	ΓΔ 🕨

图 5.1 显示安全性计算阶段的阶段浏览器

5.2 结果估计-安全性

在安全性计算中会产生附加位移。总位移无物理意义,但是最后一步(破坏时)的**增量 位移**表明了可能的破坏机理。

为了观察路堤建造的三个不同阶段中的破坏机理,作如下操作:

- 1. **赵**择最后一个安全性阶段,并点击**查看计算结果按钮**。
- 2. 从变形菜单中选择**增量位移** (Incremental displacements $|\Delta u|_{)}$ 。
- 将显示方式由矢量图改成云图。这样能很好的显示破坏机理(如图 5.2)。位移 增量的大小没有意义。

图 5.2 总位移云图,表明最后一个施工步中路堤最有可能的破坏机理

- 从工程菜单的计算信息选项中可以得到安全系数。∑Msf 的值就代表安全系数,假 设在之前几步中该值其实已经基本为常量。
- 5. 但是,评估安全系数的最好办法是绘制参数∑Msf 与某个节点位移的曲线,尽管 位移是无意义的,但可以表明破坏机理是否发展。 为了用这种方法评估三种情况下的安全系数,按照如下步骤:
 - 1) 在工具栏中点击曲线管理器按钮。
 - 2) 在**图表页面**中点击创建。
 - 3) 在曲线生成窗口中,在 x 轴选择路堤坡趾(点 A),选择变形→总位移→|u|。
 - 4) 对 y 轴,选择项目→乘子→^{∑Msf}。这样图表中就考虑了该安全性计算阶段, 结果曲线见图 5.3 所示。
 - 5) 图中最大位移没有意义。从图中可以看出,对所有曲线^{∑Msf} 都得到了一个 基本恒定值。将鼠标光标放在曲线上任一点处,就会出现一个显示^{∑Msf} 的精 确值的信息框。

图 5.3 安全系数评估

使用排水线

在这部分,将研究工程中排水线的影响。路堤施工将通过引入四个具有与前四个固结阶段相同属性的新阶段来定义,新阶段的不同之处为:

- i. 在所有新阶段中应激活排水线。
- 前三个固结阶段(1-3)的时间间隔为 1*d*。最后一个阶段设为最小孔隙水压,其值为 1.0*kN/m²* (|P-stop|)。

2 计算完成后,选择最后一个阶段并点击查看计算结果按钮。此时输出窗口中就会显示路堤最后一部分排水施工后的变形网格。为了对比排水线的影响,可以使用节点 B 的超孔隙水压消散。

- 1) ¹ 打开曲线管理器。
- 在图表页面中双击图表1(节点B的Pexcess与时间关系曲线),则显示该图表, 关闭曲线管理器。
- 3) 🗾 点击工具栏中的设置按钮。弹出设置窗口。
- 4) 点击**添加曲线按钮**,从弹出的菜单中选择从当前工程中添加选项(Add from current project)。弹出曲线生成窗口。

注:除了添加新曲线,也可以用曲线设置窗口中的相应按钮重新生成已有曲线。

- 5) 对 y 轴选择反转符号选项。
- 6) 点击 OK 确认设置,关闭曲线生成窗口。
- 7) 这样在图表中就添加了一个新的曲线,对应它的新页面也在设置窗口中打开。
- 8) 点击阶段按钮。从显示窗口中选择初始阶段和后四个阶段(排水线),点击 OK。
- 9) 在设置窗口中点击 Apply 以预览生成的曲线。
- 10) 点 *OK* 关闭设置窗口。如图 6.1 所示,图表中清楚的给出了在超孔隙水压消散所 需时间上排水线的影响。

图 6.1 排水线的影响

本教程到此结束!